Scaling of caterpillar body properties and its biomechanical implications for the use of a hydrostatic skeleton.
نویسندگان
چکیده
Caterpillars can increase their body mass 10,000-fold in 2 weeks. It is therefore remarkable that most caterpillars appear to maintain the same locomotion kinematics throughout their entire larval stage. This study examined how the body properties of a caterpillar might change to accommodate such dramatic changes in body load. Using Manduca sexta as a model system, we measured changes in body volume, tissue density and baseline body pressure, and the dimensions of load-bearing tissues (the cuticle and muscles) over a body mass range from milligrams to several grams. All Manduca biometrics relevant to the hydrostatic skeleton scaled allometrically but close to the isometric predictions. Body density and pressure were almost constant. We next investigated the effects of scaling on the bending stiffness of the caterpillar hydrostatic skeleton. The anisotropic non-linear mechanical response of Manduca muscles and soft cuticle has previously been quantified and modeled with constitutive equations. Using biometric data and these material laws, we constructed finite element models to simulate a hydrostatic skeleton under different conditions. The results show that increasing the internal pressure leads to a non-linear increase in bending stiffness. Increasing the body size results in a decrease in the normalized bending stiffness. Muscle activation can double this stiffness in the physiological pressure range, but thickening the cuticle or increasing the muscle area reduces the structural stiffness. These non-linear effects may dictate the effectiveness of a hydrostatic skeleton at different sizes. Given the shared anatomy and size variation in Lepidoptera larvae, these mechanical scaling constraints may implicate the diverse locomotion strategies in different species.
منابع مشابه
Shrinking to fit: fluid jettison from a haemocoelic hydrostatic skeleton during defensive withdrawals of a gastropod larva.
Although most of the basic animal body plans are supported by hydrostatic skeletons consisting of fluid maintained at constant volume, studies on how animals have solved biomechanical scaling dilemmas during evolution of large body size have emphasized cases where skeletons are formed by rigid solids. Larvae of gastropod molluscs swim using ciliated velar lobes supported by a constant volume hy...
متن کاملTopological Relationship Between One-Dimensional Box Model and Randić Indices in Linear Simple Conjugated Polyenes
The alternative double bonds and conjugation in the polyene compounds are one of the main properties in these compounds. Each carbon-carbon bonds in a polyene compound along the chain has appreciable double-bond character. The p-electrons are therefore not localized but are relatively free to move throughout the entire carbon skeleton as an one-dimensional box. The skeleton be considered as a r...
متن کاملP-96: Mechanical Activation of Parthenogenesis in Mouse Oocytes Using Hydrostatic Pressure
Effective protocols are introduced for parthenogenesis activation in oocytes. Hydrostatic pressure can act as a mechanical stimulator that rearranges egg contents, leading to new structural or molecular combination. Alternatively, mechanical stimulation could stimulate a mechanically-gated process, such as opening or closing of stretch activated ion channels. This study, investigated the use of...
متن کاملOntogenetic scaling of hydrostatic skeletons: geometric, static stress and dynamic stress scaling of the earthworm lumbricus terrestris
Soft-bodied organisms with hydrostatic skeletons range enormously in body size, both during the growth of individuals and in the comparison of species. Therefore, body size is an important consideration in an examination of the mechanical function of hydrostatic skeletons. The scaling of hydrostatic skeletons cannot be inferred from existing studies of the lever-like skeletons of vertebrates an...
متن کاملConstructing Graceful Graphs with Caterpillars
A graceful labeling of a graph G of size n is an injective assignment of integers from {0, 1,..., n} to the vertices of G, such that when each edge of G has assigned a weight, given by the absolute dierence of the labels of its end vertices, the set of weights is {1, 2,..., n}. If a graceful labeling f of a bipartite graph G assigns the smaller labels to one of the two stable sets of G, then f ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 214 Pt 7 شماره
صفحات -
تاریخ انتشار 2011